Reciprocating Engines in Distributed Energy and CHP Applications

3rd Annual National CHP Roadmap Workshop DER & CHP in Federal Facilities

Boston, October 23 - 25, 2002

Let's Start with a Quote

"Reciprocating gas engines are the fastest selling, least expensive distributed generation

technology in the world today."

Source: Office of Power Technologies www.eren.doe.gov/power

Existing Reciprocating Engines in CHP

- Reciprocating engine technology is established and proven
- Represents significant portion of installed base, particularly under 20MW

801MW at 1,055 sites

Why Use Reciprocating Engines

- Simple Cycle Efficiency
- Thermal Efficiency
- kW(e) kW(th)
- Reliability
- Emissions
- Installed costs
- Running costs
- What you see is what you get

Simple Cycle Efficiency

- High electrical efficiency 35% 42%
- Multiple units = Operational Flexibility

Load %

Thermal Efficiency

90% overall efficiency achievable 75%+ common Excellent for low grade heat Relatively inexpensive heat recovery process Steam and hot / cold water available

kW(e) - kW(th)

True captive power requires optimum balance of thermal and electrical energy

BUT

Economic solution may be optimized by

- Matching thermal load and installing excess electrical capacity
- Utilizing existing thermal equipment
 Reciprocating Engines offer greatest flexibility

Reliability of Natural Gas Fueled Co-Gen Systems

- Utilizing multiple units greatly enhances system reliability and availability
- N+1(or 2) Reliability cost effective with reciprocating engines

	Reciprocating Engine			Gas Turbine Engine			Electric <u>Utilitiy (a)</u>
Operational Reliability Measure (b)	Group 1 60 kW	Group 2 80-800 kW	Group 3 > 800 kW	Group 4 1-5 MW	Group 5 5-25 MW	Group 6 >25 MW	1986-1990
Availability Factor, %	95.8	94.5	91.2	92.7	90.0	93.3	85.9
Forced Outage Rate, %	5.9	4.7	6.1	4.8	6.5	2.1	24.7
Scheduled Outage							
Factor, %	0.2	2.0	3.5	3.0	4.1	4.8	9.9
Service Factor. %	63.0	68.8	80.8	85.3	85.2	95.5	40.0

⁽a) Average values are weighted by unit-years for fossil-boiler, nuclear, jet engine, gas turbine, and combined-cycle units from data reported in Generating Unit Statistics, 1986-1990, North American Electric reliability Council/Generating Availability Data Systems.

⁽b) All figures are average. Operational reliability measures are consistent with American National Standards Institute/Institute of Electrical Engineers' Standard 762.

Emissions

Stochiametric burn engines w/ 3 way catalyst or lean burn engines w/ SCR are as clean as any technology.

Gas Engine Emission Charecteristics

	Emissions Untreated*	Emissions Treated	
	lb/MWhr	lb/MWhr	PPM_v^{*1}
NOx (as N ₂)	1.480	0.222	6
CO	6.500	0.650	33
VOC	1.180	0.295	21
Particulates	0.176	0.176	NA

^{*} Source Technology Charecterization: Reciprocating Engines Energy Nexus Group

^{*1} at 15% O₂ dry

Installed Costs

- \$1500/kW installed cost on small systems
- \$750/kW installed on large systems
- Rapid project schedules

Cost Component	System 1	System 2	System 3	System 4	System 5
Nominal Capacity (kW)	100	300	800	3,000	5,000
Costs (\$/kW) Equipment					
Gen Set Package	\$260	\$230	\$269	\$400	\$450
Heat Recovery	\$205	\$179	\$89	\$65	\$40
Interconnect/Electrical	\$260	\$90	\$40	\$22	\$12
Total Equipment	\$725	\$499	\$398	\$487	\$502
Labor/Materials	\$359	\$400	\$379	\$216	\$200
Total Process Capital	\$1,084	\$899	\$777	\$703	\$702
Project and Construction Management	\$235	\$158	\$121	\$95	\$95
Engineering and Fees	\$129	\$81	\$45	\$41	\$41
Project Contingency Project Financing (interest	\$43	\$34	\$28	\$25	\$25
during construction)	\$24	\$25	\$31	\$55	\$55
Total Plant Cost (\$/kW)	\$1,515	\$1,197	\$1,002	\$919	\$919

Source: Energy Nexus Group

Running Costs

- Popular mis-conception that maintenance costs are high
- No equivalent operating hours or maintenance factors
- Even small high speed engines very durable
- Enormous installed base

Typical Natural Gas Engine Maintenance Costs

System Size kW	100kW	300kW	800kW	3,000kW	5,000kW
Maintenance Costs*1 Variable (service contract) \$/kWhr Variable (consumables \$/kWhr Fixed, \$/kWyr	0.017 0.00015 10	0.00015			
Total O&M Costs \$/MWhr	1.84	1.28	0.97	0.93	0.93
Typical time to overhaul (khours)	30-36	30 -36	30 - 36	48 - 60	40 - 72

^{*1}Maintenance costs are based on 8000 operating hours per year

Source: SFA Pacific, Inc Energy Nexus Group

What You See is What You Get

- Full output up to 122°F
- Full output up to 5000 ft
- Guaranteed performance
- Guaranteed availability
- Guaranteed costs
- Negligible performance degradation

Ideal Applications for Reciprocating Engines

Thermal applications

- Hot Water
- Steam (up to 125 psi)
- Chilled water

Project criteria

- •100kW 50MW
- Low thermal electrical energy ratio
- Hot high and dry
- Varying load
- High reliability need
- Flexible dispatch

Installation types

- Hospitals
- Universities
- Municipalities
- Light Industrials
- Office/Corporate HQ

- Prisons
- Laundries
- Hotel/Resorts
- Casinos
- Data Centers

Wärtsilä CHP References in North America

